282

+ I Plane
10.005

0.005

Known reflection coefficient
of shding load characteristic

Mean of measured points

impedance

Fig. 3. Measured reflection coefficients of a shding load at 6 equispaced
positions The center of the best-fit circle is within 0.00007 of the known
reflection coefficient of the characteristic impedance of the sliding load

which not only ensures at least 20-dB additional isolation be-
tween diodes, but also stabilizes their impedances as seen from
the six-port junction. Some diode types produce at their micro-
wave port a fraction of the detected dc voltage, and therefore
each is also preceeded by a dc block on the inner coaxial
conductor to eliminate dc cross-talk.

To illustrate the viability of the operating mode, a six-port [3]
was calibrated using five standard terminations [6], and Fig. 3
shows the results of measurements made at 5 GHz on a sliding
load (with a residual VSWR of approximately 1.01) moved in
equal increments. The standard deviation of the measured values
of || from the best-fit circle was less than 0.00003, and the
magnitude of the difference between the mean of the measure-
ments and the known value of the reflection coefficient of the
characteristic impedance of the sliding load was less than 0.00007.
The standard deviation of the difference between the measured
arguments of T was less than 0.85 degrees, which is noteworthy
considering that angular definition is indeterminate at the origin.

A test at 5 GHz was made on a sliding short-circuit moved in
equal increments. The standard deviation of the differences be-
tween the measured arguments of ' was less than 0.08 degrees,
corresponding to a physical displacement of 0.0066 mm.

These results show that six-port operation using uncalibrated
nonlinear diodes is no less accurate than methods using calibrated
diodes [3], [5], [6).

A variation of the operating mode described above is to replace
one of the diodes (say diode 4) with a linear power meter, and use
the remaining three diodes in turn as leveling loop detectors, thus
providing three values of L, i =1, 2, and 3. The value of L, is a
constant, K, as can be seen by imagining a fourth diode to be in
parallel with the power meter, and used as a leveling detector.
Thus

P/P,=K/L, i=1,23.
with K assigned an arbitrary positive value. Since only three
diodes are used, there is a 25-percent reduction in measurement
time, but the method is sensitive to changes in the leveling
reference voltage (effectively, changes in K), whereas the four-
diode mode is largely immune to leveling reference changes, with
any sensitivity being solely due to differences in diode character-
istics. Such differences are small at the low diode operating level.
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IV. CONCLUSIONS

Multiplexing four diodes to act in turn as sensors for a closed
loop leveling circuit, and recording the corresponding power
readings of a single linear power meter, eliminates the need for
either a) four linear power meters, and therefore in practice, the
use of relatively high powers, or b) the calibration of semiconduc-
tor diodes to be used as low-level power meters.

By operating all the diodes at a fixed level, sensitivity changes
(with temperature of time) may be easily accomodated by the use
of scaling factors.

The operating mode also offers flexibility in the choice of
diodes, since their linearity is not a consideration. Instead, low
1/f noise may be a selection criterion, suggesting, for instance,
the use of tunnel diodes.

The only disadvantage of the mode of operation is that nonlin-
ear (level dependent) impedances cannot be measured, since the
level at the measuring port is not held constant during the
measurement.
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Scalar Variational Analysis of Single-Mode
Waveguides with Rectangular Cross Section

PRASANNA K. MISHRA, ANURAG SHARMA, S. LABROO,
AND A. K. GHATAK

Abstract —We use the variational method to analyze single-mode optical
waveguides with rectangular cross section. In particular, we propose a new
trial field and show that it gives much better results and involves less
computational effort as compared to other trial functions.

I. INTRODUCTION

Single-mode optical waveguides with rectangular cross sections
are the building blocks of most of the devices in integrated optics,
and, hence, a knowledge of their propagation characteristics is
important for the design of such devices. However, it is not
possible to solve the electromagnetic boundary value problem
analytically to obtain the propagation characteristics of such

Manuscript received July 31, 1984; revised October 16, 1984. This work was
supported in part by the Electronics Commission, Government of India.

The authors are with the Department of Physics, Indian Institute of Technol-
ogy, New Delhi-110016, India. P K. Mishra is currently on study leave from
G. M. College, Sambalpur-768004, Orissa, India

0018-9480 /85 /0300-0282301.00 ©1985 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 3, MARCH 1985

waveguides, and one has to use numerical or approximate tech-
niques. The numerical techniques, such as circular harmonic
analysis [1], finite-element method [2], field expansion to orthogo-
nal functions [3], [4], etc., involve extensive computation and do
not lead to simple analytical forms for the modal fields. Hence,
various approximate methods have been developed, the two main
methods being the one developed by Marcatili [5], and the
effective index method [6]. However, both these methods are
accurate only for modes far from cutoff and lead to considerable
error in approximating the fundamental mode in the region of
interest for single-mode operation. It has been shown that [7]-[9]
the variational method yields more accurate results in comparison
to other approximate methods if a judicious choice of the trial
field, approximating the modal field of single-mode waveguide, is
made. The objective of the present paper is to consider ap-
propriate trial fields and compare their suitability for approxi-
mating the propagation characteristics of single-mode optical
waveguides with rectangular cross section. We restrict our studies
to the scalar approximation which has been used extensively in
the past [2], [3], [7]-[11] and holds good for most practical
waveguides in which the index difference is small.

II. ANALYSIS

We consider a general waveguide with a refractive index distri-
bution given by

n*(x,y)=ng,  |x|<b,|y|<T
=n2, |x|>b,|y|<T
=n2, y>T
=n?, y<-T. D)

Such a configuration reduces to a rectangular waveguide when
n,=n =n;<ng, to a channel waveguide when n,<n,=n, <
ny, and to an embossed waveguide when n, =n, <n, <n,.

The scalar variational expression for the fundamental mode
propagation constant 8 is given by [10]

K3 [ n2(x, ) WP dxdy — [[ 1V, dxdy

Jfwip axdy

where k,, is the free-space wavenumber, v, =v — 3 /9z, n*(x, y)
is defined by (1), and y,(x,y) is the trial field containing a
certain number of parameters with respect to which 82 is
maximized. In terms of dimensionless parameters, (2) can be
written as

g =

@

»? k%f]{n%—n2(x,y)}|¢,|2dxdy+—ff {'%

283

sion coefficients as variational parameters [11], [12], or by an
appropriate single function involving the variational parameters
[7}-[9]. The former approach is useful for analyzing multimode
structures since it can give propagation constants for a large
number of the guided modes simultaneously. Further, the trial
field involves linear combinations of many functions and it may
not be convenient for obtaining field-related characteristics of the
waveguide, such as source to waveguide coupling efficiency. On
the other hand, a single function trial field has the advantage
that, once the parameters are known, the approximation of the
field is in a very simple closed form. In the following, we discuss
some of the useful single function trial fields and compare their
accuracy. The trial fields are assumed to be separable in the X
and Y directions, i.e.,

‘I’t(xa y) =‘|l’x(x)‘¢'y(y)'

The specific forms for y, and ¢, are given below.

4

A. Double-Gaussian (DG) Trial Field

The trial field is assumed to be Gaussian, both inside and
outside the core in the X and Y directions. This is one of the
simplest trial fields and can be written as

¥, (x) = exp| ~ ax?]
v,(» =exp[-n. (y-a)],

=exp[ -0 (y-a)], ()
where 7, #7_ and d # 0 for channel and embossed waveguides.
Substituting these ¢, and ¢, in (3) and (4), one obtains an
expression for U? as a function of the variational parameters a,
7., 1_, and 4. All integrations can be carried out analytically
with some resulting in error functions (see Appendix). The value
of U? is minimized by varying the four parameters using a
standard minimization routine. The minimum value of U? ob-
tained in this way would approximate the exact U? value, and
the corresponding values of a, 7., 7_, and d when substituted
in (5) gives an approximation to the modal field.

y>d

y<d

B.  Gaussian - Exponential (GE) Trial Field

In this case, the trial field is chosen to be Gaussian inside the
core and an exponentially decaying function outside the core, i.c.,

¥, (x)=exp[—sx?], |x|< b
=exp[—shb(2x — b)], x>b
= exp[sb(2x + b)), x<-—b

¥, (y)=exp[—1,(y ~ ¢)*], T>y>c
=exp[— (T~ c)2y—T-¢)], y>T
=exp[— t,(y— ¢)?], -T<y<c
=exp[t,(T+ )2y + T~ )], y<-T. )

dy,

2
+dy

Jos

)

U*=

J[wip dxay

where
U?=b2(kink — B?).

III.

Trial fields for the fundamental mode can, in general, be
constructed either by considering a finite expansion in terms of
some appropriate mutually orthogonal functions with the expan-

VARIATIONAL TRIAL FIELDS

The form of this field is closer to the actual modal field, since
the field sufficiently away from the core indeed varies as an
exponential and not as a tail of a Gaussian as in the DG-field.
When substituted in (3) and (4), this trial field again leads to an
analytical expression for U? as a function of s, 1, #,, and ¢. This
expression also involves error functions (see Appendix) and re-
quires a four parameter minimization. Thus, the computational
effort involved is almost the same as that with DG-trial field.
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Fig. 1. Normalized propagation constant B as a function of normalized
frequency V for a rectangular waveguide. The exact results of Goell [1] are
transferred directly from his Fig. 17.

C. Cosine- Exponential (CE) Trial Field

Here we choose the trial field to be a cosine function inside the
core and an exponentially decaying function outside the core. In
fact, the corresponding trial fields ¢, and ¢, have the same form
as the exact mode for a step index slab waveguide. This trial field
can be written as

Y, (x)=cos px, |x|< b
~ cos pb-exp[— p tan pb- (x|~ b)), |x|> b
¥, (y)=cos(qT —a)exp[—qtan(qT —o)(y ~T), y>T
=cos(gqy — o), T
=cos(gqT + o)exp[g tan(qT + o)(y + T)], y<-T.
)

The trial field corresponds to the fundamental mode of a
guiding structure consisting of two mutually perpendicular slab-
waveguides, the refractive index distribution which can be ob-
tained from the values of the parameters p-g and o. The above
- trial field leads to an analytical expression for U? in terms of
p-q and o involving only simple trigonometric functions (see
Appendix). Further, it involves only three parameters, and, there-
fore, the computational effort is much less than with the GE or
DG trial fields.

IV. - CoMPARISON OF TRIAL FIELDS

In this section, we compare the accuracy and suitability of the
trial fields discussed above with the help of some typical exam-
ples. We also make a comparison with Marcatili’s method [5] and
the effective index method [6]. First, we consider a rectangular
waveguide (n, =n =n.) with n,—n, < n, having an aspect
ratio 7/b=0.5. The variation of the normalized propagation
constant B(=1- U?/V?) with the normalized frequency
V/ A =2b/X(nd— n2)/? is shown in Fig. 1 for different trial
fields along with the result obtained by using Marcatili’s analysis
and the effective index method. Since the variational analysis

IThis is strictly true as long as the trial ficlds are such that they satisfy the
same boundary and continuity conditions as the exact scalar modal field does,
i.e., the field and its first derivative are continuous everywhere and vanish at
large (infinite) distances away from the waveguide. This is true for all the trial
fields considered in the present study. A general discussion on the variational
method and its applicability is given by T. K. Sarkar, Radio Science, vol. 18,
pp: 1207-1224, Dec. 1983,
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Fig. 2. Variation of modal field versus normalized distance x /b along the
x-direction for the rectangular waveguide of Fig. 1 for V= 0.8 K.

would never result in a higher value of B than its exact value, we
can safely conclude that the trial field which gives the highest
value of B is the most accurate field.! Thus, the figure shows that
the CE trial field gives the best results even at low V values. In
fact, in the region of interest for single-mode operation, i.e., for
normalized frequencies around and below ¥ = 0.85 A (the cutoff
frequency of the next higher mode [1]), the curve corresponding
to the CE trial field almost coincides with the results of the
numerical method of Goell [1]. The DG trial field is the least
accurate of the three trial fields considered here. However, it is
still more accurate than Marcatili’s method. The GE field is only
slightly inaccurate as compared to the CE field, but the latter
requires much less computational effort. Fig. 2, where the field is
plotted along the y =0 axis for a rectangular waveguide with
V/ R =028, shows that the field corresponding to Marcatili’s
method, and the DG and GE trial fields, are considerably differ-
ent from the CE trial field and, hence, are in considerable error.

Next we consider asymmetric waveguides. In Fig. 3, we have
plotted the dispersion curves for a channel waveguide (7, = n,)
and in Fig. 4, for an embossed waveguide (n, = n,) with ny — n,
< ny, T/b=0.5, and n,=n, /1.5. These figures show that even
for such waveguides, the CE trial field gives much better results
in comparison to other methods. Further, it may be noted that,
although the GE trial field is an accurate approximation for
single-mode diffused channel waveguide [9], it is quite inaccurate
for step index waveguides, especially for asymmetric waveguides.
The modal fields along the y-direction for a channel waveguide
with ¥/ A =0.8 are plotted in Fig. 5 along with the field
obtained using Marcatili’s method, which is essentially the modal
field of an asymmetric slab waveguide obtained by ignoring the
X-variation of the refractive index.

V. SUMMARY AND CONCLUSION

In this paper, we have analyzed optical waveguides with rectan-
gular cross section using single function trial fields in the varia-
tional formulation. In particular, we have considered the double
Gaussian [13] and the Gaussian-exponential [9] trial fields which
have been used in the past to analyze diffused waveguides. In
addition, we have proposed a new trial field, the cosine-exponen-
tial trial field, and have compared the performance of this field.
Our calculations show that the cosine-exponential field requires
much less computational effort and gives much more accurate
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Fig. 3. Normalized propagation constant B as a function of normalized
frequency V¥ for a channel waveguide.
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Fig. 4. Normalized propagation constant B as a function of normalized

frequency V for an embossed waveguide.

results in comparison to the DG and GE fields. This also holds
for channel as well as embossed waveguides throughout the
single-mode region. Further, it is much more accurate than the
commonly used effective index method [6] and Marcatili’s method
5. B o

An additional advantage with the cosine-exponential field is
that one can obtain an equivalent guiding structure which can
then be used in further studies such as obtaining vector modes,
analyzing directional couplers, etc. Some of the results of such a
study have already been reported [14]. Further work along these
lines is in progress and will be reported elsewhere.

APPENDIX
EXPRESSIONS FOR U2 USING DIFFERENT TRIAL FIELDS

A. Double Gaussian (DG)

N+ n_
U*=v>*———1-E_)+V>*———(1—E
' n++n_( ) £ n++nﬁ( +)
E_+9_F 1
2N BTN By 0 142
+V; T Q1 erfa)+2(a +’n+n_)

* MARCATILI

—— GAUSSIAN EXP

—-—— COSINE_EXP

! 1

—-2.0 ~1.0 0 1.0

v/T
Fig. 5.
waveguide of Fig: 3 for 1'=0.8 &.
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Variation of modal field versus normalized distance for the channel

where a=v2a b, N.=y2n,. b, E,=etf[n, (TFd), T=T/b,

d=d/b, V? = k3b*(n}—n?), and V2, = k{b*(n} —n2 ).

B. Gaussian - Exponential (GE)

1
U? = T [VHU1 + VAL + 2V (4 + )

+ %{s211.7+ (85 + t%J3)}]
where
L=n'etf(s)/s
L= —;— exp(—s?)/s?
I=1,+2I,
L=exp| - (T +¢)’] /26(T +¢)

1,2 ' :
L= erf[,(T+¢)] -
2t, ,

771/2
2t
J4=CXP[—tf(TiC)2]/2‘12(T“c)
J=h+hL+&+J,

e=c/b,s =‘/§;b’t1,2 =2t ,b.

Jy = erf[ (T — ¢)]

C. Cosine- Exponential (CE)

2 _ V21.V1 + VCZI_V3 2VP21y2le E__z_ T q2
Iy IxIV .Ix Tzly

where
Iy=cos’p/2psinp
I,=1+sin2p/2p, I.=2I41+1L,
I, = cos® (g — o) /2 sin(q — o)
I, =1+sin2q-cosZa/2q
Iy=cos’(q+0)/Ysin(q+o), I,=I;+1,+1;
p=pbandg=qT.
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Comments on “A Rigorous Technique for Measuring
the Scattering Matrix of a Multiport Device with a
Two-Port Network Analyzer”

E. VAN LIL, MEMBER, IEEE
In the above paper,' Tippet and Speciale gave expressions for
the correction to be made on the S matrix to account for the

mismatches on the ports not connected to the network analyzer.
The basic transformation was given by

s'=((1-8)"'(1+8)-(1+T)(1-1) ")
(1= U+)+(+DUI-1) ) O

(notations as in the above paper! and [1]) from which the authors
derived

S'=(I-8)"(S-T)(I-ST) N(1-5).
By using the relation

(I-A) '+ A)=T+4)(T-4)""

)

(3)

that can be easily proven by multiplying each side both right and
left with (I — A4), we can rewrite (1) as

s =((1+8)(1-8)"'=(I-T)"/(1+T))

((I+8)(I=8)+(1-T)'(1+T)) . (4

By following the same procedure as used in the derivation of (2)
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from (1), we obtain
S'=(I-T) {((I-T)Y(I+S)-(I+T)(I-8)(I-5)""
(I=S)((I-TYI+S8)+(I+T)(I-8)) (I-T)
§'=(I-T) ' (§-T)YI-TS) '(I-T) (5)

proving the identity of (5) and (2) as was expected by Tippet and
Speciale.
The simplification of Dropkin [1] applied by Tippet and
Speciale to (5) gave
§’=(I+T)S(I-TS) (I-T)-T (6)
but does not mean a significant improvement in computational
efficiency, because I —-T', T', I+ T, and:(J —T)~! are diagonal
matrices. So, (6) is only a little bit more efficient than (5) because
it does not involve a division by I —I" but rather a multiplication
by I + I'. Furthermore, if a whole series of unknown N ports has
to be measured, the reflection coefficients in the diagonal matrix
T are known, so that only the computation of S(1~TS) ! has
to be carried out, followed by a multiplication of column i by
1-~T,, row j by 1+1T, and a subtraction of T}, from diagonal

i

element k. The formula by Dropkin [1], namely

§'=8—(I+S)T(I-8ST) (I-S5) (7

even if it does contain a significant improvement over (2), it still
is much less efficient than (6). Indeed, only the operation (I + S)T'
or T'(I — ST)~! can make use of the diagonal form of T. So, (6)
gains a whole matrix muitiplication and most of a matrix subtrac-
tion in computational effort over (7).

In the general case of an N-port measured with an M-port
network analyzer, it is easy to show that (6) needs to be applied
at most N!/(MWN — M)!) times for a M X M matrix and once
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