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Fig. 3. Measured reflection coefficients of a shding load at 6 equispaced
positions The center of the best-fit circle is within 0.00007 of the known
reflection coefficient of the characteristic impedance of the sliding load

which not only ensures at least 20-dB additional isolation be-

tween diodes, but also stabilizes their impedances as seen from

the six-port junction. Some diode types produce at their micro-

wave port a fraction of the detected dc voltage, and therefore

each is also preceeded by a dc block on the inner coaxial

conductor to eliminate dc cross-talk.

To illustrate the viability of the operating mode, a six-port [3]

was calibrated using five standard terminations [6], and Fig. 3

shows the results of measurements made at 5 GHz on a sliding

load (with a residual VSWR of approximately 1.01) moved in

equal increments. The standard deviation of the measured values

of Irl from the best-fit circle was less than 0.00003, and the

magnitude of the difference between the mean of the measure-

ments and the known value of the reflection coefficient of the

characteristic impedance of the sliding load was less than 0.00007.

The standard deviation of the difference between the measured

arguments of r was less than 0.85 degrees, which is noteworthy

considering that angular definition is indeterminate at the origin.

A test at 5 GHz was made on a sliding short-circuit moved in

equal increments. The standard deviation of the differences be-

tween the measured arguments of I’ was less than 0.08 degrees,

corresponding to a physicaf displacement of 0.0066 mm.

These results show that six-port operation using uncalibrated

nonlinear diodes is no less accurate than methods using calibrated

diodes [3], [5], [6].

A variation of the operating mode described above is to replace

one of the diodes (say diode 4) with a linear power meter, and use

the remaining three diodes in turn as leveling loop detectors, thus

providing three values of L,, i =1, 2, and 3. The value of L4 is a

constant, K, as can be seen by imagining a fourth diode to be in

parallel with the power meter, and used as a leveling detector.

Thus

P, /P4 = K/L, , i=l,2,3.

with K assigned an arbitrary positive value. Since only three

diodes are used, there is a 25-percent reduction in measurement

time, but the method is sensitive to changes in the leveling

reference voltage (effectively, changes in K), whereas the four-

diode mode is largely immune to leveling reference changes, with

any sensitivity being solely due to differences in diode character-

istics. Such differences are small at the low diode operating level.

IV. CONCLUSIONS

Multiplexing four diodes to act in turn as sensors for a closed

loop leveling circuit, and recording the corresponding power

readings of a single linear power meter, eliminates the need for

either a) four linear power meters, and therefore in practice, the

use of relatively high powers, or b) the calibration of semiconduc-

tor diodes to be used as low-level power meters.

By operating all the diodes at a fixed level, sensitivity changes

(with temperature of time) maybe easily accommodated by the use

of scaling factors.

The operating mode also offers flexibility in the choice of

diodes, since their linearity is not a consideration. Instead, low

I/f noise may be a selection criterion, suggesting, for instance,

the use of tunnel diodes.

The only disadvantage of the mode of operation is that nonlin-

ear (level dependent) impedances cannot be measured, since the

level at the measuring port is not held constant during the

measurement.
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Scalar Variational Analysis of Single-Mode

Waveguides with Rectangular Cross Section

PRASANNA K. MISHRA, ANURAG SHARMA, S. LABROO,

AND A. K, GHATAK

Abstract — We use the variational method to aualyze single-mode opticaf

wavegnides with rectangular cross section. In particular, we propose a new

trial field and show that it gives much better results and involves less

computational effort as compared to other trial functions.

I. INTRODUCTION

Single-mode optical waveguides with rectangular cross sections

are the building blocks of most of the devices in integrated optics,

and, hence, a knowledge of their propagation characteristics is

important for the design of such devices. However, it is not

possible to solve the electromagnetic boundary value problem

analytically to obtain the propagation characteristics of such
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waveguides, and one has to use numericaf or approximate tech-

niques. The numericaf techniques, such as circular harmonic

analysis [1], finite-element method [2], field expansion to orthogo-

nal functions [3], [4], etc., involve extensive computation and do

not lead to simple analytical forms for the modaf fields. Hence,

various approximate methods have been developed, the two main

methods being the one developed by Marcatili [5], and the

effective index method [6]. However, both these methods are

accurate only for modes far from cutoff and lead to considerable

error in approximating the fundamental mode in the region of

interest for single-mode operation. It has been shown that [7]–[9]

the variational method yields more accurate results in comparison

to other approximate methods if a judicious choice of the triaf

field, approximating the modal field of single-mode waveguide, is

made. The objective of the present paper is to consider ap-

propriate trial fields and compare their suitability for approxi-

mating the propagation characteristics of single-mode optical

waveguides with rectangular cross section. We restrict our studies

to the scalar approximation which has been used extensively in

the past [2], [3], [7]-[11] and holds good for most practical

waveguides in which the index difference is small.

II. ANALYSIS

We consider a general waveguide with a refractive index distri-

bution given by

nz(x, y)= n:, lxl<~,l.Yl<~
2

‘nP’
lxl>b,\yl<T

=n~, y>T

. n?, y<– T. (1)

Such a configuration reduces to a rectangular waveguide when

‘P
= n, = n. < no, to a channel waveguide when nC < nP = n~ <

n ~, and to an embossed waveguide when n, = nP < n, < n ~.

The scalar variational expression for the fundamental mode

propagation constant /3 is given by [10]

B’= ‘w ~ ‘w (2)

J/ I1+12 dxdy

—w

where k. is the free-space wavenumber, v, = v – alaz, n2(x, y)

is defined by (l), and +1(x, y) is the trial field containing a

certain number of parameters with respect to which /32 is

maximized. In terms of dimensionless parameters, (2) can be

written as

r~

sion coefficients as variational parameters [11], [12], or by an

appropriate single function involving the variational parameters

[7]-[9]. The former approach is useful for analyzing multimode

structures since it can give propagation constants for a large

number of the guided modes simultaneously. Further, the trial

field involves finear combinations of many functions and it may

not be convenient for obtaining field-related characteristics of the

waveguide, such as source to waveguide coupling efficiency. On

the other hand, a single function trial field has the advantage

that, once the parameters are known, the approximation of the

field is in a very simple closed form. In the following, we discuss

some of the useful single function trial fields and compare their

accuracy. The triaf fields are assumed to be separable in the X

and Y directions, i.e.,

+t(x, Y)=+x(~)”+y(Y). (4)

The specific forms for +x and $Y are given below.

A. Double-Gaussian (DG) Trial Field

The trial field is assumed to be Gaussian, both inside and

outside the core in the X and Y directions. This is one of the

simplest trial fields and can be written as

*X(x) =exp[-ax2]

~y(y)=exp[- ~+(y-d)2], y>d

=exp[-q_(y-d)2], y<d (5)

where q+ # q_ and d # O for channel and embossed waveguides.

Substituting these +X and +, in (3) and (4), one obtains an

expression for U2 as a function of the variational parameters a,

q+, q-, and d. All integrations CRU be carried out analytically
with some resulting in error functions (see Appendix). The value

of U2 is minimized by varying the four parameters using a

standard minimization routine. The minimum value of U2 ob-

tained in this way would approximate the exact U2 value, and

the corresponding values of a, q+, q., and d when substituted

in (5) gives an approximation to the modal field.

B. Gaussian - Exponential (GE) Trial Field

In this case, the triaf field is chosen to be Gaussian inside the

core and an exponentially decaying function outside the core, i.e.,

$X(x) =exp[–sx’], 1X1< b

= exp[– sb(2x – b)], x>b

= exp[sb(2x + b)], x<–b

*,(y) =exp[- q(y - C)2], T>y>c

=exp[–tl(T –c)(2y– T– c)], y>T

=exp[–t2(y–c)2], –T<y<c

= exp[i2(T+ c)(2y + T– c)], y<– T. (6)

(3)

jjlkl’dxdy

where

U’=b2(k~n~ -/32).

III. VARIATIONAL TRIAL FIELDS

Trial fields for the fundamental mode can, in general, be

constructed either by considering a finite expansion in terms of

some appropriate mutually orthogonal functions with the expan-

The form of this field is closer to the actual modal field, since

the field sufficiently away from the core indeed varies as an

exponential and not as a tail of a Gaussian as in the DG-field.

When substituted in (3) and (4), this trial field again leads to an

analytical expression for U2 as a function of s, il, t2,and c. This

expression also involves error functions (see Appendix) and re-

quires a four parameter minimization. Thus, the computational

effort involved is almost the same as that with DG-trial field.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 3, MARCH 1985284

c

(

0

B

c

t

~ , y , , m

no O.& 0,6 0.8

v /n

Fig. 1. Normalized Drouagation constant B as a function of normalized

~requency V for a r’&ct&@lar waveguide. The exact results of Goell [1] are

transferred directly from his Fig, 17.

C. Cosine-Exponential (CE) Trial Field

Here we choose the triaf field to be a cosine function inside the

core and an exponentially decaying function outside the core. In

fact, the corresponding trial fields +X and ~Y have the same form

as the exact mode for a step index slab waveguide. This trial field

can be written as

+,(x) =cospx, 1X1< b
=cospb. exp[–ptanpb .(lxl- b)], IXI> b

+.p(y)= COS(qT- u)eXp[– qtm(qT–u)(y– ~)], y>T
=Cos(qy -u), Iy[< T
=cos(qT+ u)exp[qtan(qT+ u)(y+ T)], y<– T.

(7)

The triaf field corresponds to the fundamental mode of a

guiding structure consisting of two mutually perpendicular slab-

waveguides, the refractive index distribution which can be ob-

tained from the values of the parameters p. g and u. The above

triaf field leads to an analytical expression for U2 in terms of

p” q ~d u involving only simple trigonometric functions (see
Appendix). Further, it involves only three parameters, and, there-

fore, the computational effort is much less than with the GE or

DG trial fields.

IV. COMPARISON OF TRIAL FIELDS

In this section, we compare the accuracy and suitability of the

triaf fields discussed above with the help of some typical exam-

ples. We also make a comparison with Marcatili’s method [5] and

the effective index method [6]. First, we consider a rectangular

waveguide ( nP = nC = n,) with no – n, << nO having an aspect

ratio T/b = 0.5. The variation of the normalized propagation

constant B( = 1 – U*/ V2 ) with the normalized frequency

L’/ A = 2b/A( n: – n~)l/2 is shown in Fig. 1 for different trial

fields along with the result obtained by using Marcatili’s analysis

and the effective index method. Since the variational analysis

1This is strictly true as long as the trial fields are such that they satisfy the

same bounda~ and continuity conditions as the exact scalar modal field does,

i.e., the field and its first derivative are continuous everywhere and vanish at

large (infinite) distauces away from the waveguide, This is true for all the trial

fields considered in the uresent study. A general discussion on the variational

method and its applicability is given” by ~. K. %.rkar, Radio Science, vol. 18,

PP. 1207–1224, Dec. 1983.
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Fig. 2. Variation of modal field versus normalized distance x/b along the

x-direction for the rectangular waveguide of Fig. 1 for V = 0.8 x.

would never result in a higher value of B than its exact value, we

can safely conclude that the trial field which gives the highest

value of B is the most accurate field.1 Thus, the figure shows that

the CE trial field gives the best results even at low v values. In

fact, in the region of interest for single-mode operation, i.e., for

normalized frequencies around and below V = 0.85 T (the cutoff

frequency of the next higher mode [1]), the curve corresponding

to the CE trial field almost coincides with the results of the

numerical method of Goell [1]. The DG triaf field is the least

accurate of the three trial fields considered here. However, it is

still more accurate than Marcatili’s method. The GE field is only

slightly inaccurate as compared to the CE field, but the latter

requires much less computational effort. Fig. 2, where the field is

plotted along the y = O axis for a rectangular waveguide with

V/ K = 0.8, shows that the field corresponding to Marcatili’s

method, and the DG and GE trial fields, are considerably differ-

ent from the CE trial field and, hence, are in considerable error.

Next we consider asymmetric waveguides. In Fig. 3, we have

plotted the dispersion curves for a channel waveguide ( nP = n,)

and in Fig. 4, for an embossed waveguide ( nP = n ~) with no – n,
<< no, T/b = 0.5, and nC = no/1.5. These figures show that even

for such waveguides, the CE triaf field gives much better results

in comparison to other methods. Further, it may be noted that,

although the GE triaf field is an accurate approximation for

single-mode diffused channel waveguide [9], it is quite inaccurate

for step index waveguides, especially for asymmetric waveguides.

The modal fields along the y-direction for a channel waveguide

with V/ K = 0.8 are plotted in Fig. 5 along with the field

obtained using Marcatili’s method, which is essentially the modaf

field of an asymmetric slab waveguide obtained by ignoring the

X-variation of the refractive index.

V. SUMMARY AND CONCLUSION

In this paper, we have analyzed optical waveguides with rectan-

gular cross section using single function trial fields in the varia-

tional formulation. In particular, we have considered the double

Gaussian [13] and the Gaussian-exponential [9] trial fields which

have been used in the past to analyze diffused waveguides. In

addition, we have proposed a new triaf field, the cosine-exponen-

tial trial field, and have compared the performance of this field.

Our calculations show that the cosine-exponential field requires

much less computational effort and gives much more accurate
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results in comparison to the DG and GE fields. This also holds

for channel as well as embossed waveguides throughout the

single-mode region. Further, it is much more accurate than the

commonly used effective index method [6] and Marcatili’s method

[5].

An additional adv~tage with the cosine-exponential field is

that one can obtain an equivalent guiding structure which can

then be used in further studies such as obtaining vector modes,

analyzing directional couplers, etc. Some of the results of such a

study have already been reported [14]. Further work along these

lines is in progress and will be reported elsewhere.

APPENDIX

EXPRESSIONS FOR U2 USING DIFFERENT TRIAL FIELDS

A. Double Gaussian (DG)

U2 = J,72 ~+:q_ (1- E_)+ ~2-&(l - E+)

+v2~+E-+%E+
P

(1-erfa)+~(u2 +q+q_)
T++%

— COSINE EXP
-. MARCATILI
‘.— GAUSSIAN EXP

,,.

– 0.2

1 1 1
-2.0 -1.0 0 1.0 2.0

Y/T

Fig. 5. Variation of modaf field versus normalized distance for the channel

waveguide of Fig. 3 for V = 0.8 K.

B. Gaussian - Exponential (GE)

[
U2 = ; V21J1 + ~21J4 + 2~212(Jz + Js)

where

II= 7rl/2 erf ( s)/s

12= ~ exp(– s2)/s2

1=11+212

Jl=exp[-t~(~+c)2] /2t~(T+c)

*V

—--- erf[t2(Z’+ c)]
‘2 = 2t2

TV2

J3 = Ztl—erf[tl(T– c)]

J4=exp[ –t~(Z’:c)2]/2t~ (Z’-c)

J= JI+J2+J3+J4

c=c/b, s=@ b,tl,z=~b.

C. Cosine-Exponential (CE)

V2{,1 + ~.2[p3 z~2!v21x1 + P2
2

u= =
z,

+ ~+~
Ix 1, ~ T21

Y

where

IKl = cos3 p/2p sin p

[., =l+sin2p/2p, 1.= 21., + 1.,

{PI = cos3 (q – u)/2qsin(q – rr)

{,2 =li-sin2q. cos20/2q

{,,3 = COS3(q + u)/2qsin(q + u), Z, = lYI + ZY2+ {,3

p=pbandq=qT.
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Letters

Comments on “A Rigorous Technique for Measuring

the Scattering Matrix of a Multiport Device with a

Two-Port Network Analyzer”

E. VAN LIL, MEMBER, lEEE

In the above paper,* Tippet and Speciale gave expressions for

the correction to be made on the S matrix to account for the

mismatches on the ports not connected to the network analyzer.

The basic transformation was given by

s’=((~- sJ-’(~+ s)-(~+r)(~-r)-l)

.((~-s)-’(~+s)+ (~+r)(~-r)-’)-’ (I)

(notations as in the above paperl and [1]) from which the authors

derived

s’=(~–s)-’(s –r)(z–srJ-l(~– s). (2)

By using the relation

(l- A)-l(I+A) =( I+ A)(I-A)-l (3)

that can be easily proven by multiplying each side both right and

left with (1 – A), we can rewrite (1) as

s’=((~+ s)(r-s)-l-(z -r)-l(~+ r))

.((r+s)(~-s)-l+ (~-r) -’(~+ r))-l. (4)

By following the same procedure as used in the derivation of (2)
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from (l), we obtain

s’=(~–r)-l((r– r)(~+s)–(z +r)(~–s))(~–s)-l

.(~-s)((~- r)(z+s)+(~+ r)(~-s))-’(~-r)

or

s’=(~-r)-’(s -r)({-rs)-’(r)r) (5)

proving the identity of (5) and (2) as was expected by Tippet and

Speciale.

The simplification of Dropkin [1] applied by Tippet and

Speciale to (5) gave

s’=(I+r)s(~ –rs)-l(~–r)–r (6)

but does not mean a significant improvement in computational

efficiency, because 1 – r, I’, 1 + I’, and (1 – r)– 1 are diagona3

matrices. So, (6) is only a little bit more efficient than (5) because

it does not involve a division by 1 — 17 but rather a multiplication

by 1 + I’. Furthermore, if a whole series of unknown N ports has

to be measured, the reflection coefficients in the diagonal matrix

r are known, so that only the computation of S(1 – 17S)- 1 has

to be carried out, followed by a multiplication of column i by

1 – 17,, row j “by 1 + ~ and a subtraction of r~ from diagonal

element k. The formula by Dropkin [1], namely

s’=s–(~+sJr(~–sr)-l(r–s) (7)

even if it does contain a significant improvement over (2), it still

is much less efficient than (6). Indeed, only the operation ( 1 + S) 17

or r( 1 – Sr) -1 can make use of the diagonal form of r. So, (6)

gains a whole matrix multiplication and most of a matrix subtrac-

tion in computational effort over (7).

In the general case of an iv-port measured with an M-port

network analyzer, it is easy to show that (6) needs to be applied

at most N!/(M!(N – M)!) times for a M X M matrix and once
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